Grain size, size-distribution and dislocation structure
نویسنده
چکیده
Diffraction peak profile analysis (or Line Profile Analysis, LPA) has recently been developed to such an extent that it can be applied as a powerful method for the characterization of microstructures of crystalline materials in terms of crystallite size-distribution and dislocation structures. Physically based theoretical functions and their Fourier coefficients are available for both, the size and the strain diffraction profiles. Strain anisotropy is rationalized in terms of the contrast factors of dislocations. The Fourier coefficients of whole diffraction profiles are fitted by varying the following fundamental parameters characterizing the microstructure: (i) m and (ii) V, the median and the variance of the log-normal size distribution function, (iii) U and (iv) M, the density and the arrangement parameter of dislocations and (v) q or q1 and q2 for the average dislocation contrast factors in cubic or hexagonal materials, respectively. The method will be illustrated by showing results on ECA pressed copper and titanium.
منابع مشابه
Grain Size Effect on the Hot Deformation Processing Map of AISI 304 Austenitic Stainless Steel
In this study, the hot deformation processing map of AISI 304 austenitic stainless steel in two initial grain sizes of 15 and 40 μm was investigated. For this purpose, cylindrical samples were used in the hot compression test at the temperature range of 950-1100 °C and the strain rate of 0.005-0.5% s-1. At first, the relationship between the peak stress and Zener-Hollomon parameter w...
متن کاملCrystal plasticity analysis of deformation behavior of nanocrystalline nickel
Nanocrystalline (NC) metals with grain sizes <100 nm have attracted a lot of attention in the materials science fi eld for more than a few decades because of their ultra-high strength and hardness. Various experimental and computational studies indicate that dislocation-mediated plasticity prevails in NC metals when the grain size is larger than ~10 nm. Recent molecular dynamics (MD) simulation...
متن کاملMicrostructure and its Relationship to Mechanical Properties in Equal Channel Angular Rolled Al6061 Alloy Sheets
Equal channel angular rolling (ECAR) is a severe plastic deformation (SPD) technique which has been used to produce metal sheets with ultra-fine grain structure. In the present work, the relationships between the mechanical properties and microstructure of samples during the ECAR process have been investigated. The Rietveld method was applied to analyze the X-ray diffraction pattern and to det...
متن کاملGrain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction
Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress lim...
متن کاملProduction of Fe-C Powders with Improved Structure
Production of Fe-C alloy powders by mechanical alloying was studied. Fe and graphite elemental powder mixtures containing 0.8 and 1.5wt.% graphite were mechanically alloyed using a planetary ball mill. The structural changes of powder particles during mechanical alloying were studied by x-ray diffractometery, scanning electron microscopy and microhardness measurements. For both compositions, me...
متن کاملLimit of Dislocation Density and Ultra-Grain-Refining on Severe Deformation in Iron
It is well-known that severe deformation to metals causes a direct grain refinement of the matrix without special heat-treatments due to the mechanism of dynamic continuous recrystallization (DCR). However, the microstructural revolution during severe deformation is seemed to be different depending on the deformation mode, namely the direction of deformation. In general, multi-directional defor...
متن کامل